

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

2

About the Sponsor�� 4

Introduction��� 5

Cloud Native Definition��� 7

Cloud Native in Practice��� 10

Cloud Native Systems and Tools������������������������������� 11

DevOps�� 12

Containers and Clusters��� 15

Microservices�� 18

Security�� 21

 Container Image Security��� 21

 Microservice and Network Security�� 22

Resources�� 25

Table of Contents

Joe Beda started his career at Microsoft working on Internet Explorer

(he was young and naive). Throughout seven years at Microsoft and ten

at Google, Joe has worked on GUI frameworks, real-time voice and chat,

telephony, machine learning for ads and cloud computing. Most notably,

while at Google, Joe started the Google Compute Engine and, along with

Brendan Burns and Craig McLuckie, created Kubernetes. Today, Joe Beda

is the Co-Founder and CTO of Heptio, which provides IT organizations with

what they need to realize the full potential of Kubernetes and transform

IT into a business accelerator. Joe proudly calls Seattle home.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

3

Linux Journal Presents: In Their Words—Voices from the Community

Copyright Statement
© 2017 Heptio. All rights reserved.

This site/publication contains materials that have been created, developed
or commissioned by, and published with the permission of, Linux Journal
(the “Materials”), and this site and any such Materials are protected by
international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Linux Journal or its Web site
sponsors. In no event shall Linux Journal or its sponsors be held liable for technical
or editorial errors or omissions contained in the Materials, including without limitation,
for any direct, indirect, incidental, special, exemplary or consequential damages
whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio
and/or video) may be copied, reproduced, republished, uploaded, posted,
transmitted or distributed in any way, in whole or in part, except as permitted under
Sections 107 & 108 of the 1976 United States Copyright Act, without the express
written consent of the publisher. One copy may be downloaded for your personal,
noncommercial use on a single computer. In connection with such use, you may not
modify or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the
property of third parties. You are not permitted to use these trademarks, services
marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent &
Trademark Office. All other product or service names are the property of their
respective owners. If you have any questions about these terms, or if you would
like information about licensing materials from Linux Journal, please contact us
via e-mail at info@linuxjournal.com.

mailto:info@linuxjournal.com

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

4

About the Sponsor
Heptio

Heptio unleashes the technology-driven enterprise with

products and services that help customers realize the full

potential of Kubernetes and transform IT into a business

accelerator. The company’s training, support and

professional services speed integration of Kubernetes

and related technologies into the fabric of enterprise

IT, while its products reduce the cost and complexity

of running these systems in production environments.

To learn more, visit https://www.heptio.com.

https://www.heptio.com

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

5

Introduction
As Linux has become the mainstay of Enterprise IT, it

has become increasingly challenging to install, test and

ultimately review properly new products built for large,

scalable environments. Although Linux Journal publishes

substantial, in-depth product reviews, we can’t possibly

review every worthwhile product, especially in an arena

Joe Beda,
Co-Founder and
CTO of Heptio,
on Becoming
a Cloud Native
Organization
	 JOE BEDA

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

6

l ike ours that grows and changes so fast. Increasingly,

too, important discussions focus on issues of design

process, organization and communication—not just on

specific products or tools.

Linux Journal’s “In Their Words” series will allow some

really smart new product creators to tell about their

product and their universe, in great technical depth,

in their own words. This series is not intended to sell

you anything, but rather to keep you aware, with the

technical depth you need, of the latest and greatest

advancements and innovations in our community.

Information Week provides this definition of “cloud

native” (from 2015):

At the heart of “cloud native” lies Linux, Linux

containers, and the concept of applications assembled

as microservices in containers. Indeed, the Linux

Foundation launched the Cloud Native Computing

Foundation. But cloud native means a lot more than

implementing Linux clusters and running containers. It’s

a term that recognizes that getting software to work in

the cloud requires a broad set of components that work

together. It also requires an architecture that departs

from traditional enterprise application design.

Cloud computing simply used to mean running

your software on someone else’s servers. It was an

incremental adjustment, l ike moving from a manual

to automatic transmission. But as cloud computing,

or “cloud native” thinking has evolved, it has become

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

7

a new development and delivery platform in general.

Rather than an incremental step, going cloud native is

akin to when we switched from horses to automobiles.

Transportation was never the same again, and l ikewise,

neither wil l the world of development.

In this ebook, Joe Beda goes beyond tools and

design, beyond the traditional boundaries of software

engineering, with an expansive discussion of cloud

native thinking. Then, with sections devoted to cloud

native in practice, devops, containers and clusters,

microservices and security, he presents a roadmap for

organizations to move toward a cloud native model.

As Joe says, “We are sti l l at the beginning of this

journey.” Jump in and let’s see where it leads.

Cloud Native Definition
Since I started my journey toward building Heptio along

with CEO Craig McLuckie, I’ve been doing a lot of

thinking around where the industry is going. Craig and

I spent quite a bit of time at Google (16 years between

the two of us) and have a good understanding of how

Google builds and manages systems. But chances are

you don’t work at Google. So how do all of these

evolving new concepts apply to a typical company/

developer/operator?

In this ebook, I examine multiple ways to understand

and apply cloud native thinking. There’s no hard and fast

definition, and other terms and ideas overlap. Automation

and new architectures are key to realizing the promise of

managing complexity and achieving greater velocity. But,

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

8

at its root, cloud native thinking is as much about teams,

people and culture as it is about technology.

One important note: you don’t have to run in the

cloud to be cloud native. The techniques that I describe

here can be applied incrementally as appropriate and

should help smooth any transition to the cloud or

between clouds.

The real value of cloud native thinking goes far

beyond the basket of technologies that are closely

associated with it. To understand where our industry is

really going, we need to examine where and how we can

make companies, teams and people more successful.

These techniques have been proven at big, technology-

centric, forward-looking companies that have dedicated

many resources to the effort—think Google or Netflix

or Facebook. Smaller, more flexible companies are

also realizing value here. However, there are very few

examples of this philosophy being applied outside

technology early adopters. We are still at the beginning

of this journey when viewed across the wider IT world.

Key outcomes based on early experiences include:

n	 More efficient and effective teams. Cloud native

tooling lets you break down big problems into smaller

components for more focused and nimble teams.

n	 Reduced drudgery through automating much of

the manual work that causes operations pain and

downtime. Automation can enable self-healing and

self-managing infrastructure, and teams can expect

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

9

systems to do more.

n	 More reliable infrastructure and applications.

Building automation to handle expected churn often

results in better failure modes for unexpected events

and failures. For example, if it is a single command or

button click to deploy an application for development,

testing or production, it can be much easier to manage

deployment in a disaster-recovery scenario, either

automatically or manually.

n	 Auditable, visible and debuggable applications.

Complex applications can be very opaque. The tools

used for cloud native applications, by necessity, can

provide more insight into what is happening within

an application.

n	 Deep security. Many IT systems today have a hard outer

shell and a soft gooey center. Modern systems should

be secure and “least trust” by default. A cloud native

approach lets application developers play an active role

in creating securable applications.

n	 More efficient usage of resources. Automated

deployment and management of applications and

services open up opportunities to apply algorithmic

automation. For instance, a cluster scheduler/

orchestrator can automate placement of work on

machines, instead of an operations team managing

a similar assignment in a spreadsheet.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

10

Cloud Native in Practice
Let’s look more closely now at what it means to put cloud

native thinking into practice in the following areas:

n	 Integration with existing systems

n	 DevOps

n	 Containers and orchestration

n	 Microservices

n	 Security

Like any area with active innovation, there is quite a bit

of churn in the cloud native world. It isn’t always clear

how best to apply these ideas. In addition, any project of

significance is inevitably too important and too large to re-

write from scratch (see Joel Spolsky’s classic blog post on

this: https://www.joelonsoftware.com/2000/04/06/things-

you-should-never-do-part-i/). Instead, I encourage you to

experiment with these new structures for newer projects

or for new parts of existing projects. Then, as you tackle

improving older parts of the system, take the time to apply

new techniques and learnings as appropriate. Look for ways

to break out new features or systems as microservices—in

other words, break up a large application into smaller pieces

that can be developed and managed independently.

There are no hard and fast rules. Every organization is

different, and software development practices must be

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

11

scaled to the team and project at hand. The map is not the

territory. Some projects are amenable to experimentation,

and others are critical enough that they should be

approached much more carefully. There are also situations

in the middle where the techniques that were proven out

need to be formalized and tested at scale before they are

applied to critical systems.

Cloud Native Systems and Tools
A cloud native approach is defined by better tooling and

better systems. Without this tooling, each new service

in production will have a high operational cost. Each

new service is a separate thing that has to be monitored,

tracked, provisioned and so forth. That overhead is one

of the main reasons why sizing of microservices should be

done in an appropriate way. The benefits in development

team velocity must be weighed against the costs of running

more things in production.

Similarly, introducing new technologies and languages,

although exciting, comes with cost and risk that must be

weighed carefully. Charity Majors has a great talk about

this issue at https://www.oreilly.com/ideas/a-young-ladys-

illustrated-primer-to-technical-decision-making.

Automation is the key to reducing the operational costs

associated with building and running new services. Systems

like Kubernetes, containers, CI/CD (continuous integration/

continuous deployment), monitoring and so on all have the

same overarching goal of making application development

and operations teams more efficient so they can move

faster and build more reliable products.

https://www.oreilly.com/ideas/a-young-ladys-illustrated-primer-to-technical-decision-making
https://www.oreilly.com/ideas/a-young-ladys-illustrated-primer-to-technical-decision-making
https://www.oreilly.com/ideas/a-young-ladys-illustrated-primer-to-technical-decision-making

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

12

The newest generation of tools and systems are better

set up to deliver on the promise of cloud native over older

traditional configuration management tools, as they help

to break the problem down so that it can be spread across

teams easily. Newer tools generally empower individual

development and ops teams to retain ownership and be

more productive through self-service IT.

DevOps
It is probably most useful to think of DevOps as a cultural

shift whereby developers must care about how their

applications are run in a production environment. In

addition, the operations folks are empowered to know

how the application works, so they can play an active

part in making the application more reliable. Building

understanding and empathy between those teams is key.

And if you re-examine the way applications are built

and how the operations team is structured, you can

improve and deepen this relationship.

For example, Google does not employ traditional

The newest generation of tools and systems
are better set up to deliver on the promise
of cloud native over older traditional
configuration management tools, as they help
to break the problem down so that it can be
spread across teams easily.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

13

operations teams. Instead, Google defines a new type

of engineer called the Site Reliability Engineer. These

are highly trained engineers who not only carry a pager,

but also are expected and empowered to play a critical

role in pushing applications to be ever more reliable

through automation.

When a pager goes off at 2am, anyone who answers does

the exact same thing—try to fix things so that they can go

back to bed. What defines an SRE is what happens at 10am

the next morning. Instead of just accepting that this is the

way things are, as traditional siloed operations people might

do, SREs work with the development team to ensure that

an outage like that never will happen again. The SRE and

development teams have incentives aligned around making

the product as reliable as possible. This approach, combined

with blameless post-mortems (https://www.pagerduty.com/

blog/blameless-post-mortems-strategies-for-success), can

lead to healthy projects that don’t collect technical debt.

SREs are some of the most highly valued people at

Google. In fact, oftentimes products launch without SREs

with the expectation that the development team will

run their product in production. The process of bringing

on SREs often involves the development team proving

to the SRE team that the product is ready. It is expected

that the development team will have done all of the leg

work, including setting up monitoring and alerting, alert

playbooks and release processes. The dev team should be

able to show that pages are at a minimum and that most

problems have been automated away. Other companies

don’t have a separate SRE/ops role and instead follow the

https://www.pagerduty.com/blog/blameless-post-mortems-strategies-for-success
https://www.pagerduty.com/blog/blameless-post-mortems-strategies-for-success

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

14

mantra of “You build it, you run it”. Regardless of the

details, when executed well, this model leads to more and

more robust and automated systems over time.

As the role of operations becomes more involved and

application-specific, it doesn’t make sense for a single

team to own the entire operations stack. Instead, we can

think in terms of operations specialization. Let’s take it

from the bottom up:

n	 Hardware Ops. This is already clearly separable.

In fact, it is easy to see cloud IaaS as “Hardware Ops

as a Service”.

n	 Operating System Ops. Someone has to make sure the

machines boot and that there is a good kernel. Breaking

this out from application dependency management

mirrors the trend of minimal OS distributions focused

on hosting containers (CoreOS Container Linux, Red

Hat Project Atomic, Ubuntu Snappy, Google Container

Optimized OS).

n	 Cluster Ops. In a containerized world, a compute

cluster becomes a logical infrastructure platform.

The cluster system (such as Kubernetes) provides a

set of primitives that enables many of the traditional

operations tasks to be self-service.

n	 App Ops. Each application can now have a dedicated

app ops team as appropriate. As I mentioned previously,

the dev team can and should play this role as necessary.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

15

The ops team members are expected to go deeper on

the application because they don’t have to be experts in

the other layers. For example, at Google, the AdWords

front-end SRE team talks to the AdWords front-end

development team a lot more than they’ll talk to the

cluster SRE team. This alignment of incentives can lead to

better outcomes.

There probably is room for other specialized SRE teams

depending on the needs of the organization. For instance,

storage services could be broken out as a separate service

with dedicated SREs, or there might be a team responsible

for building and validating the base container image that all

teams should use as a matter of policy.

Containers and Clusters
It’s helpful to try to get to the root of why containers are

exciting to so many folks. In my mind, there are three

reasons for this excitement:

n	 Packaging and portability

n	 Efficiency

n	 Security

Let’s look at each of these in turn.

First, containers provide a packaging mechanism. This

allows the building of a system to be separated from its

deployment. In addition, the artifacts/images that are built

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

16

are much more portable across environments (dev, test,

staging, production) than more traditional approaches, such

as VM images. Deployments also become more atomic.

Traditional configuration management systems (Puppet,

Chef, Salt or Ansible) can leave systems in a half-configured

state that is hard to debug. It is also easy to have

unintended version skew across machines without realizing

it. Containers help keep configurations and versions stable.

Second, containers can be lighter weight than full

systems, which can lead to more efficient resource

utilization. This was the main driver when Google

introduced cgroups—one of the core kernel technologies

underlying containers. By sharing a kernel and allowing

for more fluid overcommit, containers can make it easier

to “use every part of the buffalo”. Over time, expect to

see much more sophisticated ways to balance the needs

of containers cohabitating a single host without noisy

neighbor issues.

Finally, many users view containers as a security

boundary. Although containers can be more secure than

simple UNIX processes, care should be taken before viewing

them as a hard security boundary. The security assurances

provided by Linux namespaces may be appropriate for

Over time, expect to see much more
sophisticated ways to balance the needs of
containers cohabitating a single host without
noisy neighbor issues.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

17

“soft” multi-tenancy where the workloads are semi-trusted

but not appropriate for “hard” multi-tenancy where

workloads are actively antagonistic. This situation continues

to evolve as many people are working hard to improve the

security situation for containers. Jess Frazelle has a fun

container CTF (capture the flag) up at https://contained.af

to demonstrate some best practices.

There is ongoing work in multiple quarters to blur the

lines between containers and VMs. Early research into

systems like unikernels is interesting but won’t be ready for

wide production for years yet.

Although containers provide an easy way to achieve the

goals of portability, efficiency and security, they aren’t

absolutely necessary. Netflix, for instance, traditionally has

run a very modern stack (and is often an AWS example

customer) by packaging and using VM images (EC2 AMIs)

similar to how others use containers.

Most of the original excitement about containers centered

on managing the software on a single node in a more reliable

and predictable way. The next step in this evolution manages

the software in terms of clusters (also often known as

orchestrators). Taking a number of nodes and binding them

together with automated systems creates a new self-service

logical infrastructure for development and operations teams.

Clusters help eliminate ops drudgery. With a container

cluster, you make computers take over the job of figuring

out which workload should go on which machine. Instead

of paging people, clusters also automatically fix things

when hardware fails in the middle of the night.

Clusters enable the operations specialization that allows

https://contained.af

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

18

application ops to thrive as a separate discipline. With

a well defined cluster interface, application teams can

concentrate on solving the problems that are immediate to

the application itself.

And clusters make it possible to launch and manage more

services. This allows new architectures that can unlock

velocity for development teams—specifically, architectures

based on microservices.

Microservices
This is a new name for a concept that has been around for a

long time. Basically, it is a way to break up a large application

into smaller pieces that can be developed and managed

independently. Let’s look at some of its key attributes:

n	 Strong and clear interfaces. Tight coupling between

services must be avoided. Documented and versioned

interfaces help solidify the contracts between services

and also retain a certain degree of freedom for

consumers and producers of these services.

n	 Independently deployed and managed. It should

be possible for a single microservice to be updated

without having to touch all the other services. It is

also desirable to be able to roll back a version of a

microservice easily. These requirements mean that

both the API and any data schemas for the service

must be forward- and backward-compatible. Good

cooperation and communication mechanisms between

the appropriate ops and dev teams are vital here.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

19

n	 Resilience built in. Microservices should be built

and tested to be independently resilient. Code that

consumes a service should strive to continue working

and do something reasonable if the consumed service

is down or misbehaving. Similarly, any service that is

offered should be able to handle unanticipated load

and bad input gracefully.

Sizing of microservices can be a tricky thing to get

right. Avoid services that are too small (pico-services);

instead, split services across natural boundaries (languages,

async queues, scaling requirements), and keep team sizes

reasonable (that is, two-pizza teams).

The application architecture should be allowed to grow

in a practical and organic way. Instead of starting with

20 services, start with two or three, and split services as

complexity in that area grows. Oftentimes the architecture of

an application isn’t clearly understood until the application

is well under development. Remember that applications are

rarely “finished” but rather always a work in progress.

Are microservices a new concept? Not really. They

represent another type of software componentization.

We’ve always split up code into libraries. In a microservices-

driven world, the “linker” becomes a run-time concept

instead of a build-time concept. (A recognition of this

parallel can be found in the linkerd project. This is a CNCF

project based on the Twitter Finagle system.) This is also

very similar to the SOA push from several years ago but

without all of the XML. Viewed from another angle, the

database has almost always been a “microservice”, in that

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

20

it often is implemented and deployed in a way that satisfies

the points above.

Constraints can lead to productivity. Although it’s tempting

to allow each team to choose a different language or

framework for each microservice, consider standardizing on

a few languages and frameworks. Doing so helps improve

knowledge transfer and mobility within the organization.

However, be open to making exceptions to policy as necessary.

This is a key advantage of this world over a more vertically

integrated and structured PaaS. In other words, constraints

should be a matter of policy rather than capability.

Although most people view microservices as an

implementation technique for a large application, there are

other types of services that form the services spectrum:

n	 Shared artifact, private instance. In this scenario, the

development process is shared across many instances

of the service. There may be one dev team and many

ops teams, or perhaps a unified ops team that works

across dedicated instances. Many databases fall into

this category where different teams are running private

instances of a single MySQL binary.

n	 Shared instance. Here a single team provides a shared

service to many applications and teams inside an

organization. The service may partition data and actions

per user (multi-tenant) or provide a single simple service

that is used very widely (for example, serving an HTML

UI for a common branding bar, and serving up machine

learning models).

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

21

n	 Big-S service. Most enterprises don’t produce services

like this, but they may consume them. This is the typical

“hard” multi-tenant service that is built to service a

large number of different customers. This type of service

requires a level of accounting and hardening that isn’t

often necessary inside an enterprise. SendGrid or Twilio

falls into this category.

As services become not an implementation detail but a

common infrastructure in an enterprise, the service network

morphs from a per-application concept to something that

can span the entire company. There is an opportunity and a

danger in allowing these types of dependencies.

Security
Security is still a big question in the cloud native world. Old

techniques don’t apply cleanly, and cloud native approaches

may appear to be a step backward initially. But this brave

new world also introduces opportunities.

Container Image Security Quite a few tools can help

users audit their container images to ensure that they are fully

patched. I don’t have a strong opinion on the various options.

The real problem is what do you do once you find a

vulnerable container image. This is a place where the

NOTE: This section doesn’t cover all aspects of security in the new cloud

native world. Also, although I’m not a security expert, it is something I’ve

paid attention to throughout my career. Consider these remarks as part of

a map of things to consider.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

22

market hasn’t yet provided a great set of solutions. Once

a vulnerable image is found, the problem is no longer

technical—it’s a process/workflow issue. You need to

identify the groups in your organization that are affected,

where in your container image tree to fix the problem, and

how best to test and push out a new patched version.

CI/CD (continuous integration/continuous deployment) is

a critical piece of the puzzle because it enables automated,

quick release processes for new images. Integration with

orchestration systems lets you identify which users are using

which vulnerable images, and allows you to verify that a

new fixed version is actually being run in production. Finally,

policy in your deployment system can help prevent new

containers from being launched with a known bad image.

(In the Kubernetes world, this policy is called admission.)

Microservice and Network Security Even if all of

the things you are running on your cluster are patched, it

doesn’t ensure your network is clear of untrusted activity.

Traditional network-based security tools don’t work well

in a dynamically scheduled short-lived container world.

Short-lived containers may not be around long enough to

be scanned by traditional scanning tools. And by the time

a report is generated, the container in question may be

gone. With dynamic orchestrators, IP addresses don’t have

Even if all of the things you are running on
your cluster are patched, it doesn’t ensure your
network is clear of untrusted activity.

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

23

long-term meaning and can be reused automatically.

The solution is to integrate network analysis tools with

the orchestrator, so that logical names (and other metadata)

can be used in addition to raw IP addresses. This approach

can help make alerts more easily actionable.

Many networking technologies leverage encapsulation to

implement an “IP address per container”. This can create

issues for network tracing and inspection tools if such

networking systems are deployed in production. Luckily,

much of this has been alleviated by the standardization on

VXLAN, VLANs, or by using no encapsulation/virtualization.

However, in my opinion, the biggest issues are around

microservices. When there are many services running in

production, it is necessary to ensure that only authorized

clients are calling any particular service.

Furthermore, with the reuse of IP addresses, clients

need to know that they are communicating with the

correct service. As of now, this is largely an unsolved

problem. There are two (non-mutually exclusive) ways to

approach this problem.

The first approach means more flexible networking

systems and the opportunity to implement host-level

firewall rules (outside any container) to enable fine-

grained access policies for which containers can call other

containers. I’ve been calling this approach network micro-

segmentation. The challenge here is to configure these

policies to work with dynamic scheduling. There is support

in Kubernetes to define and apply network policy. In

addition, while early yet, multiple companies are working

to provide support at the network level, coordination with

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

24

the orchestrator and higher-level application definitions.

One big caveat: micro-segmentation becomes less effective

the more widely any specific service is used. If a service has

hundreds of callers, simple “access implies authorization”

models are no longer effective.

The second approach is for applications to play a larger

role in implementing authentication and encryption inside

the data center. This approach works as services take on

many clients and become “soft multi-tenant” inside a

large organization. A system of identity for production

services is required, however. A little while ago, I started a

project called SPIFFE (Secure Production Identity Framework

For Everyone) to provide this level of authentication and

encryption everywhere. This project is being developed and

shepherded by another startup called Scytale. The ideas

behind SPIFFE are proven inside companies like Google but

haven’t been widely deployed elsewhere.

What I’ve included here is just the tip of the iceberg

when discussing cloud security. This is a complex

topic that needs careful attention, and details wil l

vary depending on your specific environment. We are

constantly exploring the landscape of threats and how

to protect against them. Expect more from Heptio on

cloud security in the future.

I hope this discussion of multiple ways to think about

and apply cloud native application development serves as a

jumping off point for your own cloud native thinking. Be sure

to see the following Resources section for more information,

and please let us know your thoughts on cloud native by

reaching out to @jbeda, @cmcluck or @heptio on Twitter.n

In Their Words  Joe Beda, Co-Founder and CTO of Heptio, on Becoming a Cloud Native Organization

25

Resources

Heptio: https://heptio.com. We simplify and scale

Kubernetes for developers and operators, unleashing IT to

become an accelerator for the technology-driven enterprise.

Minimal OS Distributions Focused on Hosting Containers:

n	 CoreOS Container Linux: https://coreos.com/os/docs/latest

n	 Red Hat Project Atomic: http://www.projectatomic.io

n	 Ubuntu Snappy: https://developer.ubuntu.com/core

n	 Google Container Optimized OS:
		 https://cloud.google.com/container-optimized-os/docs

linkerd: https://linkerd.io

Twitter Finagle: https://twitter.github.io/finagle

VXLAN (Virtual Extensible LAN):

https://en.wikipedia.org/wiki/Virtual_Extensible_LAN

SPIFFE (Secure Production Identity Framework For Everyone):

https://spiffe.io

https://heptio.com
https://coreos.com/os/docs/latest
http://www.projectatomic.io
https://developer.ubuntu.com/core
https://cloud.google.com/container-optimized-os/docs
https://linkerd.io
https://twitter.github.io/finagle
https://en.wikipedia.org/wiki/Virtual_Extensible_LAN
https://spiffe.io

